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Abstract
Following the proposal of a filtration technique by Nobe, Satsuma and Tokihiro,
we concretely construct partial difference equations, which preserve any time
evolution patterns of cellular automaton (CA) stably by the filtration technique.
We illustrate how to develop a method of filtration for applying to the typical
two spatial dimensional CA rule—the game of life—and verify that the
filtration method provides the stable difference equation associated with the
CA, compared with the inverse ultradiscretization. Besides, in order to discuss
whether the filtration technique can lead one to partial differential equations
from CA rules, we show a derivation of the Burgers equation from Rule 184
CA via the discrete Burgers equation constructed by the filtration method as an
example.

PACS numbers: 05.45.Yv, 02.10.Ab, 05.65.+b, 87.17.−d

1. Introduction

Various complicated patterns can be seen in physical phenomena. In many cases, they are
modelled and analysed by cellular automaton (CA), because it is a discrete system which can
produce complex patterns in spite of its simplicity. However, recently, the complicated patterns
have been discussed in view of the continuous dynamical systems. For example, a regular self-
similar structure like a Sierpinski gasket is shown in the excitable reaction diffusion systems by
computer simulations [1, 2]. Therefore, it would be significant to understand how the discrete
systems and the continuous systems relate. Actually, CA associated with the continuous
system is discussed widely. For instance, the problem of CA is proposed as Wolfram’s 9th
problem, namely, ‘what is the correspondence between cellular automata and continuous
systems?’ [3], and rather for physical interest, a CA model of excitable media including
curvature and dispersion is investigated [4]. (More general topics are collected in [5].)
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For integrable CA, a direct link between CAs and integrable partial differential equations
is successfully given by ultradiscretization, which is a procedure for transforming a difference
equation to a CA [6–8]. In the procedure, by taking a limit of a parameter which exists in the
solutions and the equation, we obtain the analytical expression for the time evolution patterns
of the CA. The patterns obtained preserve the features of the original solutions naturally. A
typical example is the soliton cellular automaton [9]. The ultradiscretization is not specific
to soliton systems and can be applied widely. Indeed, there exists an example where the
ultradiscrete limit is applied to a chaotic equation [10].

On the other hand, the inverse process of the ultradiscretization—inverse
ultradiscretization—which is a procedure for transforming a CA to a difference equation, is also
considered in order to examine the connection between CA and continuous systems. However,
the naive approach of the inverse ultradiscretization has a serious difficulty in constructing
the difference equation which stably preserves the original patterns of the CA [11]. Recently,
Nobe, Satsuma and Tokihiro proposed a universal method of inverse ultradiscretization which
stably preserves any time evolution pattern of any CA [12]. In their paper, they have defined a
stable piecewise linear map associated with a given CA and discussed its importance in inverse
ultradiscretization. They have presented a general method to construct a stable piecewise linear
map from a CA, and a general formalism to construct a stable map by introducing the notion
of filtration.

In this paper, referring to the idea of filtration, we concretely construct the partial
difference equations which preserve any time evolution patterns of the CA stably. In
this study, we focus on two points as follows. First, we investigate how to develop a
method of filtration for applying to the concrete and complicated system, and show how
to obtain the stable difference equation uniquely associated with the CA. Secondly, we
examine whether the filtration technique can lead one to partial differential equations from
CA rules. For the first point, we concretely derive the difference equation corresponding
to the two spatial dimensional CA rule—the game of life—as a typical example, and
verify that the stable complex patterns are produced by the constructed difference equation,
compared with the inverse ultradiscretization. (We should comment on the main reasons
why the game of life is selected as follows. It is well known that the game of life is
one of the typical two spatial dimensional CA. It simulates the dynamical evolution of
a society of living organisms by means of a simple algorithm. Despite its simplicity,
it provides the complex dynamics of the game. Various approaches are adopted to
understand the dynamics (for example, see [13] and references therein).) For the second
point, since Nishinari and Takahashi concluded that the relation between the Burgers
equation and one of the elementary CA (ECA)—Rule 184 CA—was clarified via the
discrete Burgers equation and the ultradiscrete Burgers equation derived from the discrete
Burgers equation with ultradiscretizaton [14], referring to this result, we derive the
Burgers equation from Rule 184 CA through the filtration technique. We discuss whether
the filtration technique is a method which can contribute to revealing the relation between the
continuous dynamical system and the CA rule.

This paper is organized as follows: In section 2, we review the naive approach to
constructing a difference equation by inverse ultradiscretization and weigh the difficulty in
obtaining a difference equation which stably exhibits any time evolution patterns of the game
of life. In section 3, we construct a partial difference equation which preserves any time
evolution patterns of the game of life by introducing the filtration functions. In section 4,
we apply the procedure obtained in the previous section to Rule 184 CA in order to examine
the connection between CA and continuous systems. Section 5 is devoted to concluding
remarks.



Construction and properties of the difference equation derived from CA using the filtration technique 307

2. The naive approach by inverse ultradiscretization

In this section, we consider the naive approach to constructing the partial difference equation
associated with the game of life by means of inverse ultradiscretization. It is usually done
with the following steps:

• We rewrite the time evolution rule of a CA as a piecewise linear equation with max and
plus algebra.

• By introducing a parameter ε, we make a tropical variable change, that is, we replace
max[a, b] by ε log[ea/ε + eb/ε].

The time evolution rule of the game of life is given as follows. Let the site on the two
spatial dimensional lattice have the value 0 or 1. The site whose value is 1 is called the ON
site. When the value of the site is 0, it is called the OFF site. The value of the site at the next
timestep is determined by the values of its site and the nearest neighbour sites (Moore
neighbourhoods) at the present timestep. Two cases are allowed to make the site be ON
at the next timestep. The first case is that the site is ON and two or three ON sites exist as
its nearest neighbours. The second one is that the site is OFF and three ON sites exist as
its nearest neighbours. In other cases, the site keeps or becomes OFF at the next timestep.
Generally the time evolution rule of the game of life is denoted by

vt+1
i,j = FLG

(
vti−1,j−1, v

t
i,j−1, v

t
i+1,j−1, v

t
i−1,j , v

t
i,j , v

t
i+1,j , v

t
i−1,j+1, v

t
i,j+1, v

t
i+1,j+1

)
(1)

where vti,j ∈ {0, 1} is the value of the {i, j } site (i, j ∈ Z) on the two spatial dimensional lattice

at timestep t ∈ Z, and FLG is a map from
{0, 1} × {0, 1} × · · · × {0, 1}︸ ︷︷ ︸

9 times
to {0, 1} and represents the

above rule.
In order to rewrite the time evolution rule of the game of life as a piecewise linear equation,

we give the three functions A, B and C as follows.

A =
{

1 (three sites are ON in the nearest neighbours)
0 (otherwise)

(2)

B =
{

1 (two sites are ON in the nearest neighbours)
0 (otherwise)

(3)

C =
{

1 (three sites are ON in its own and the nearest neighbours)
0 (otherwise)

. (4)

Then, we obtain the piecewise linear equation with max and plus algebra which shows that the
value of a certain site on a two-dimensional lattice at timestep t + 1 (ut+1 ∈ R) is determined
by the values of its own site and the nearest neighbour sites at the previous timestep t

(
ut and

utk (k = 1, 2, . . . , 8) ∈ R
)
. We consider the condition that a piecewise linear equation has the

symmetry of the space and inversion between ON and OFF, and the scaling invariability of
the dependent variable (the equation is unchanged when ut 	→ κut , κ ∈ R). Thus, one of the
simplest piecewise linear equations which obeys the time evolution rule of the game of life is
given by

ut+1 = ut +A + max(A + B,B + C, ut + B, ut + C)− max(ut , A)− max(ut , B). (5)

Here, we can get the functions A, B and C explicitly by using the functions Lij and LCij .
The functions Lij and LCij are defined by

Lij := max
(
uta1

+ uta2
+ · · · + utai − utb1

− utb2
− · · · − utbj

)
(6)

LCij := max
(
uta′

1
+ uta′

2
+ · · · + uta′

i
− utb′

1
− utb′

2
− · · · − utb′

j

)
(7)
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where utal and utbm(a1 � al � ai, b1 � bm � bj ) are assigned from utk (k = 1, 2, . . . , 8) as
mutually different. In the case of LCij, ut

a′
l

and utb′
m
(a′

1 � a′
l � a′

i , b
′
1 � b′

m � b′
j ) are assigned

from ut and utk (k = 1, 2, . . . , 8) as mutually different. For example,

L12 = max
(
uta1

− utb1
− utb2

)
(8)

= max
(
ut1 − ut2 − ut3, ut1 − ut2 − ut4, ut1 − ut2 − ut5, . . .

)
(9)

LC21 = max
(
uta′

1
+ uta′

2
− utb′

1

)
(10)

= max
(
ut + ut1 − ut2, ut + ut1 − ut3, ut + ut1 − ut4, . . .

)
. (11)

When we calculate the functions Lij and LCij , the values of Lij and LCij are given by
tables 1 and 2, respectively. Moreover, the functionsA, B and C are shown as a combination of
Lij and LCij . Table 3 shows the expressions of the functionsA, B and C by the combination
of Lij and LCij .

From equation (5), we obtain the partial difference equation by making a tropical variable
exchange (inverse ultradiscretization) as

ut+1 = ut +A + ε log

[
exp

(
A + B

ε

)
+ exp

(
B + C

ε

)
+ exp

(
ut + B

ε

)
+ exp

(
ut + C

ε

)]

− ε log

[
exp

(
ut

ε

)
+ exp

(
A

ε

)]
− ε log

[
exp

(
ut

ε

)
+ exp

(
B

ε

)]
(12)

Table 1. The values of Lij against the number of ON sites in the nearest neighbours.

0 1 2 3 4 5 6 7 8

L11 0 1 1 1 1 1 1 1 0
L12 0 1 1 1 1 1 1 0 −1
L21 0 1 2 2 2 2 2 2 1
L22 0 1 2 2 2 2 2 1 0
L23 0 1 2 2 2 2 1 0 −1
L32 0 1 2 3 3 3 3 2 1
L33 0 1 2 3 3 3 2 1 0
L34 0 1 2 3 3 2 1 0 −1
L43 0 1 2 3 4 4 3 2 1
L44 0 1 2 3 4 3 2 1 0

Table 2. The values of LCij against the number of ON sites in its own and the nearest neighbours.

0 1 2 3 4 5 6 7 8 9

LC11 0 1 1 1 1 1 1 1 1 0
LC12 0 1 1 1 1 1 1 1 0 −1
LC21 0 1 2 2 2 2 2 2 2 1
LC22 0 1 2 2 2 2 2 2 1 0
LC23 0 1 2 2 2 2 2 1 0 −1
LC32 0 1 2 3 3 3 3 3 2 1
LC33 0 1 2 3 3 3 3 2 1 0
LC34 0 1 2 3 3 3 2 1 0 −1
LC43 0 1 2 3 4 4 4 3 2 1
LC44 0 1 2 3 4 4 3 2 1 0
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Table 3. The expressions of the functions A, B and C by the combination of Lij and LCij.

A

1 −L22 + L32 + L34 − L44
2 L11 − L12 − L21 + L32 + L34 − L44
3 −L11 + L12 + L21 − L22 − L23 + L33 + L34 − L44
4 −L23 + L33 + L34 − L44
5 L11 − L12 − L21 + L22 − L23 + L33 + L34 − L44
6 −L22 + L32 + L33 − L43
7 L11 − L12 − L21 + L32 + L33 − L43

B

1 −L11 + L21 + L22 − L32 − L33 + L34 + L43 − L44
2 −L11 + L21 + L23 − L33
3 −L12 + L22 + L23 − L33
4 −L11 + L21 + L22 − L32
5 −L11 + L21 + L23 − L34 − L43 + L44
6 −L12 + L22 + L23 − L34 − L43 + L44
7 −L11 + L21 + L22 − L32 + L33 − L34 − L43 + L44

C

1 −LC22 + LC32 + LC34 − LC44
2 LC11 − LC12 − LC21 + LC32 + LC34 − LC44
3 −LC11 + LC12 + LC21 − LC22 − LC23 + LC33 + LC34 − LC44
4 −LC23 + LC33 + LC34 − LC44
5 LC11 − LC12 − LC21 + LC22 − LC23 + LC33 + LC34 − LC44
6 −LC22 + LC32 + LC33 − LC43
7 LC11 − LC12 − LC21 + LC32 + LC33 − LC43

or replacing ut/ε, exp(A/ε), exp(B/ε) and exp(C/ε) with Ut , Ã, B̃ and C̃, respectively.

Ut+1 = Ut + log

[
Ã

(
C1C̃

C2 exp(Ut ) + Ã
+

C3B̃

C4 exp(Ut) + B̃

)]
(13)

where C1, C2, C3 and C4 are the positive constants which vanish in the ultradiscrete limit
(ε → +0) so thatUt ≡ 0 ( for ∀t and any sites) remains a solution in the inverse ultradiscretized
process. The functions Ã, B̃ and C̃ in the above equation are explicitly shown by the inverse
ultradiscretization of Lij and LCij . We define the functionsXij and XCij by

Xij :=
∑
ai ,bj

e
(
Uta1

+Uta2 +···+Utai−Utb1 −Utb2 −···−Utbj
)

(14)

XCij :=
∑
ai ,bj

′
e
(
Uta1

+Uta2 +···+Utai−U
t
b1

−Utb2 −···−Utbj
)

(15)

where the summation
∑
ai ,bj

means the sum of all the cases that Utal and Utbm(a1 � al �
ai, b1 � bm � bj ) are assigned from Utk (k = 1, 2, . . . , 8) as mutually different, and the
summation

∑′
ai ,bj

is the sum of all the cases Utal and Utbm (a1 � al � ai, b1 � bm � bj ) are
assigned from Ut and Utk (k = 1, 2, . . . , 8) as mutually different. Then the functions Lij and
LCij are replaced by

Lij = ε logXij (ε → +0) (16)

LCij = ε logXCij (ε → +0). (17)
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For simplicity, we consider one case of table 3 as an example. (This process is similarly
applied to the other cases.) When the function is given by

A = −L22 + L32 + L33 − L43 (18)

� −ε logX22 + ε logX32 + ε logX33 − ε logX43 (19)

we obtain the function Ã as

Ã = exp(A/ε) = X32X33

X22X43
. (20)

Therefore, when the functions B and C are given by

B = −L12 + L22 + L23 − L33 (21)

C = −LC22 + LC32 + LC33 − LC43 (22)

from the equation (13), we have the difference equation

Ut+1 = Ut + log

[
X32X33

X22X43

(
231
560

XC32XC33
XC22XC43

exp(Ut) + X32X33
X22X43

+
7

40
X22X23
X12X33

exp(Ut ) + X22X23
X12X33

)]
. (23)

In this equation, the constants C1, C2, C3 and C4 are determined to satisfy the condition that
the equation has the trivial solution Ut ≡ 0 for ∀t and any sites. Figure 1 shows the results
of simulating the equation (23). In this figure, the parameter ε is 0.1. The white site means
the value of it is 10.0

(
uti,j = 1.0

)
. The black site is the value 0.0

(
uti,j = 0.0

)
. The grey

level corresponds to the magnitude of the value from zero to ten. This figure shows the typical
time evolution pattern of the game of life—a blinker—is gradually dispersing and vanishing.
(Note that the original blinker pattern of the game of life keeps its values and two types of the
patterns evolve by turns, see figure 3.) This implies the difference equation (23) does not have
a solution which preserves the blinker pattern as long as the parameter ε is finite. This is the
difficulty in constructing a difference equation from a CA by the naive approach.

3. Difference equation associated with the game of life

We define two monotonic and smooth real functions X0(x) and X1(x) which keep almost
constant (0 or 1) around x = 0 and x = 1. The configurations of these functions (the filtration
functions) are shown in figure 2. As an example, the functions are explicitly given by

X0(x) = 1

2

(
1 + tanh

(
1 − 2x

2ε

))
(24)

X1(x) = 1

2

(
1 − tanh

(
1 − 2x

2ε

))
(25)

where ε is a small constant. The point of these functions is one condition:

the filtration functions behave as X0(0) = 1,X0(1) = 0,X1(0) = 0

and X1(1) = 1 in the limit of ε → +0. (26)

This behaviour works as the filtration for stabilizing. In fact, by using the functions X0(x)

and X1(x), we can automatically construct the difference equation which produces the time
evolution pattern of the CA stably. The rule of CA which depends on the values of the sites
at the prior timestep is represented by the linear combination of X0(x) and X1(x). (Note that,
therefore, the filtration functions are not always (24) and (25). They have to satisfy only the
condition (26). Indeed, the other filtration functions will be applied in the next section.)
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Figure 1. Blinker (the inverse ultradiscretization). The numerical result of the difference equation
(23). The parameter ε is 0.1. A white site means the value of it is 10.0

(
uti,j = 1.0

)
. A black site

has the value 0.0
(
uti,j = 0.0

)
. The grey levels correspond to the magnitude of the value from zero

to ten.

− 1 − 0.5 0.5 1 1.5 2

− 1

− 0.5

0.5

1

1.5

2

x

X0(x), X1(x)

Figure 2. The configuration of the filtration functions (X0: solid line, X1: broken line).

In the case of the game of life, the partial difference equation is given by the linear
combination of X0(x) and X1(x):

Ut+1
i,j = KF

(
Uti−1,j−1, U

t
i−1,j , U

t
i−1,j+1, U

t
i,j−1, U

t
i,j , U

t
i,j+1, U

t
i+1,j−1, U

t
i+1,j , U

t
i+1,j+1

)
=

1∑
i0=0

1∑
i1=0

1∑
i2=0

1∑
i3=0

1∑
i4=0

1∑
i5=0

1∑
i6=0

1∑
i7=0

1∑
i8=0

FLG(i0, i1, i2, i3, i4, i5, i6, i7, i8)

×Xi1
(
Uti−1,j−1

)
Xi2
(
Uti−1,j

)
Xi3
(
Uti−1,j+1

)
Xi4
(
Uti,j−1

)
Xi5
(
Uti,j

)
Xi6
(
Uti,j+1

)
×Xi7

(
Uti+1,j−1

)
Xi8
(
Uti+1,j

)
Xi9
(
Uti+1,j+1

)
(27)



312 T Watanabe

Figure 3. Blinker (by the filtration technique). The numerical result of the difference equation (27)
with the filtration functions (24) and (25) The parameter ε is 0.1. A white site means the value of
it is 10.0

(
Uti,j = 10.0

)
. A black site has the value 0.0

(
Uti,j = 0.0

)
. The grey levels correspond

to the magnitude of the value from zero to ten. The initial conditions and each timestep of the
simulation correspond to figure 1. In fact, only two colours (black and grey) appear after timestep
1 and the value of the grey sites means unity.

where Uti,j ∈ R is the value at time t ∈ Z on the {i, j } site (i, j ∈ Z) and KF is a map

from
R × R × · · · × R︸ ︷︷ ︸

9 times
to R, and FLG is the map which represents the time evolution rule of the

game of life. Here, we define the map KF as stable [12] when there exists a positive number
δ
(
0 < δ < 1

2

)
such that if ∀i,∀j ,

∣∣Uti,j − vti,j
∣∣ < δ then

∣∣KF (Uti−1,j−1, . . . , U
t
i+1,j+1

)− FLG
(
vti−1,j−1, . . . , v

t
i+1,j+1

)∣∣ < δ.
Then we find that equation (27) preserves any time evolution pattern of the CA in the sense
that, when the initial values of the equation (27) approximately take values in {0, 1} with a
tolerance of δ, the time evolution pattern of the equation (27) coincides with that of (1) if we
round off the dependent variables in the pattern.

Figure 3 shows the results of simulating the difference equation (27) with the filtration
functionsX0(x) andX1(x)which are given by (24) and (25) with ε = 0.1. In figure 3, a white
site means the value of it is 10.0

(
Uti,j = 10.0

)
. A black site has the value 0.0 (Uti,j = 0.0). The

grey levels correspond to the magnitude of the value from zero to ten. The initial conditions
and each timestep of the simulation correspond to figure 1. Compared with figure 1, this figure
shows the blinker patterns develop stably. In fact, only two colours (black and grey) appear
after timestep 1 and the value of the grey sites means unity.
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Figure 4. The result of the numerical calculation (a blinker). The result of the numerical calculation
of the partial difference equation (27) by using the filtration functions (24) and (25), with ε = 0.009.
The slightly different initial values 0.49 and 0.51 are given.

(This figure is in colour only in the electronic version)

Figure 4 shows the result of the numerical calculation of the partial difference equation
(27) by using the the filtration functions (24) and (25) with ε = 0.009. This figure shows that
the slightly different initial values 0.49 and 0.51 converge to almost 0.00 and 1.00 respectively,
and the blinker pattern develops stably. This implies the filtration functions can recover the
patterns of CA which are slightly left at the first timestep.

Figure 5 also shows the result of the numerical calculation of the partial difference equation
(27) by using the the filtration functions (24) and (25) with ε = 0.009. In this figure, the
initial values are given randomly from zero to one. (A white site means the value of it is 1.0.
A black site has the value 0.0. The grey levels correspond to the magnitude of the value from
zero to one.) However, in this case, the values of some sites which induce a typical pattern of
the game of life—the glider—are accidentally greater than 0.5 at the initial timestep. Then the
glider pattern of the game of life gradually appears from the initial values distributed almost
randomly and evolves stably. This shows the filtration functions select the patterns of the
game of life among the initial values and make them converge to the regular patterns.

These results show the filtration technique is a reliable method which provides the
stable difference equations uniquely associated with the complicated CA. The procedure of
inverse ultradiscretization is not always able to give a way to construct the stable difference
equation uniquely. Besides, it is not known which limiting procedure of ultradiscretization is
best [12]. It is practically hard to find the stable difference equation, particularly, in the cases
of the higher dimensional CA and the complicated CA rules. For the filtration technique, the
point is only one condition (26). We can construct the stable difference equation easily and
automatically by the technique. However, the concrete difference equation (27) is made up
of 140 terms by all combinations of X0(x) and X1(x). It is not easy to relate the equation to
the continuous dynamical systems. It is obscure which limiting procedure is better to connect
the constructed difference equations with the continuous systems. In the next section, we will
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Figure 5. The result of the numerical calculation (a glider). The result of the numerical calculation
of the partial difference equation (27) by using the the filtration functions (24) and (25), with
ε = 0.009. The initial values are given randomly from zero to one. (A white site means the value
of it is 1.0. A black site has the value 0.0. The grey levels correspond to the magnitude of the value
from zero to one.) However, in this case, the values of some sites which induce a typical pattern
of the game of life—a glider—are accidentally greater than 0.5 at the initial timestep.

show an example of the derivation of the continuous dynamical equation through the filtration
technique.

4. Examination for the continuous systems

In this section, we apply the procedure obtained in the previous section to an ECA, in order to
examine the connection between CA and continuous systems. In the paper [14], the relation
between the Burgers equation and one of the ECA (Rule 184 CA) was clarified via the discrete
Burgers equation and the ultradiscrete Burgers equation which was derived from the discrete
Burgers equation with ultradiscretizaton. Referring to this result, we apply the procedure of
the filtration functions to Rule 184 CA.

In the case of ECA, we have the general difference equation as

Ut+1
i =

1∑
i1=0

1∑
i2=0

1∑
i3=0

FECA(i1, i2, i3)Xi1
(
Uti−1

)
Xi2
(
Uti
)
Xi3
(
Uti+1

)
(28)

whereUti ∈ R is the value of the ith site (i ∈ Z) andFECA is a map from {0, 1}×{0, 1}×{0, 1}
to {0, 1}. The rule of ECA is generally expressed as

vt+1
i = FECA

(
vti−1, v

t
i , v

t
i+1

)
(29)
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where vti ∈ {0, 1} is the value of the ith site (i ∈ Z). Here, we consider Rule 184 CA whose
time evolution rule is given by

Utj−1U
t
jU

t
j+1

Ut+1
j

= 000

0
,

001

0
,

010

0
,

011

1
,

100

1
,

101

1
,

110

0
,

111

1
.

From equation (28), we obtain the difference equation as

Ut+1
i = X0

(
Uti−1

)
X1
(
Uti
)
X1
(
Uti+1

)
+ X1

(
Uti−1

)
X0
(
Uti
)
X0
(
Uti+1

)
+X1

(
Uti−1

)
X0
(
Uti
)
X1
(
Uti+1

)
+X1

(
Uti−1

)
X1
(
Uti
)
X1
(
Uti+1

)
. (30)

When the filtration functionsX0(x) and X1(x) which satisfy the condition (26) are given by

X0(x) := 1

2

(
1 +

2

π
arctan

(
1 − 2x

2ε

))
(31)

X1(x) := 1

2

(
1 − 2

π
arctan

(
1 − 2x

2ε

))
(32)

where ε is a constant, by using Utj � X1
(
Utj
)
, we get the difference equation associated with

Rule 184 CA as

Ut+1
j − Utj = 1

π2

(
arctan

(
1 − 2Utj+1

2ε

)
− arctan

(
1 − 2Utj−1

2ε

))
arctan

(
1 − 2Utj

2ε

)

− 1

2π

(
arctan

(
1 − 2Utj−1

2ε

)
− 2 arctan

(
1 − 2Utj

2ε

)
+ arctan

(
1 − 2Utj+1

2ε

))
.

(33)

In equation (33), we transform Utj to V tj by

V tj ≡ −1 − 2Utj
2ε

(34)

and make the parameter ε sufficiently large with the continuous limit of space and time as
V t

′
j ≡ Ṽ (j x, t ′ t) and V (x, t) := lim x, t→+0 Ṽ (j x, t

′ t), (x = j x, t = t ′ t). Note
that changing the parameter ε for a larger presents the inverse process of discretizing the
dependent variable. Then, we have

Vt = 1

(πε)2
 x

 t
V Vx +

1

2πε

 x2

 t
Vxx + O(ε−3, t, x3). (35)

When we regard 1/ε ∼  x and  x3/ t ∼ 1, and neglect the higher order terms we get the
Burgers equation:

Vt = αV Vx + βVxx (36)

where α ≡  x
(πε)2 t

and β ≡  x2

2πε t . This result shows the Burgers equation is derived from
Rule 184 CA by the filtration technique. Furthermore, this derivation does not depend on the
choice of the filtration functions (recall the condition (26)). Therefore, it can be concluded that
the filtration technique relates Rule 184 CA to the Burgers equation. This affords one example
which implies that the filtration technique can give a way to the continuous dynamical systems
from the CA rule while preserving the behaviour of the solutions.

In the above process, we should notice that the limiting procedure of obtaining the
continuous equation (36) from the constructed difference equation (33) is followed without
any difficulty. It is the crucial point for relating the CA rule to the partial differential
equation. Actually, in the case that the difference equation concretely constructed from the
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general difference equation, such as (27) or (28), is complicated, it may be difficult to find
the appropriate procedure to obtain the continuous equation. (As mentioned in the section 3,
the two spatial dimensional difference equation is made up of 140 terms composed by all
combinations of the filtration functions.) However, this fact will not mean that the filtration
technique is useless, because it is the method which provides the difference equation associated
with the CA. We can construct the stable difference equation associated with any other ECA as
Rule 18 CA and Rule 90 CA which have a solution of the Sierpinski gasket type. Besides, it can
be extended to more-than-two-state CA [15]. These facts are encouraging to try to challenge
the further work, which is, for example, to investigate which limiting procedure is appropriate
to obtaining the continuous equation from the difference equation, and to clarify which types
of partial differential equations are related with CA rules. We believe that one approach to
accumulating the evidence is finding other examples of correspondence by referring to results
given by studies from different viewpoints such as [1, 2].

5. Concluding remarks

Following the proposal of [12], we concretely construct the partial difference equations, which
preserve any time evolution patterns of the CA stably by the filtration technique. We illustrate
how to develop a method of filtration applicable to the game of life, and verify that the filtration
method provides the stable difference equation associated with the CA, compared with the
inverse ultradiscretization. We also show the derivation of the Burgers equation from Rule 184
CA via the discrete Burgers equation constructed by the filtration method. We comment on the
possibility that the filtration technique can contribute towards leading one to the continuous
equation from the CA rule.

From the above results, we conclude that the filtration technique is a reliable method
which works better than the inverse ultradiscretization at the point that the stable difference
equation is constructed uniquely from the CA rule. One can automatically obtain the stable
difference equation associated with the CA by following the concrete process shown in this
paper. We believe that, considering the relation between the CA rules and the continuous
systems, we can get a hint from the filtration technique. Moreover, the filtration technique
may be applied to other subjects. We hope that much of the material presented here can be
useful for further investigation in related (more difficult) problems.
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